

Prosumers with PV battery systems in electricity markets – a mixed complementarity approach

Marco Breder, Felix Meurer, Christoph Weber GOR-Workshop Dresden, 23.06.2022

Offen im Denken

- Which adjustments to the regulatory framework can work towards a system-oriented
 - operation of decentralized flexibilities?
- Considering decentralized actors, we focus on prosumers.
- We discuss the role of retailers.
- We use the concept of **Mixed Complementarity Problems** (MCP)
 - Different optimization problems are combined in one equilibrium model

UNIVERSITÄT

D U I S B U R G E S S E N

Offen im Denken

Motivation

Motivation

Research on residential PV battery systems

Sector coupling

 Decentralized sector coupling and flexibility options are important for the integration of renewable energies.

 \rightarrow e.g. Bernath et al. (2021), Fridgen et al. (2020)

Investments in PV battery systems

Increased investments in PV battery systems are accompanied by higher availability of decentralized flexibility.

 \rightarrow e.g. Dietrich, Weber (2018), Kappner et al. (2019)

Increasing self-consumption

- Current regulatory design incentivizes self-consumption.
 - \rightarrow e.g. Bertsch et al. (2017)

Focus on incentives for system-oriented investments

- Dietrich & Weber (2018)
 - Focus:
- Profitability of residential PV battery storage system
- Method: Mixed-integer linear optimization model
- Highlights:

High temporal resolution (5 Minutes) Accounting for regulatory and fiscal treatment of prosumers

- Günther et al. (2021)
- Focus:
- Method:
- Highlights:
- Tariff design incentives on household-investments in residential PV and battery storage systems
- MCP Considers prosumage hour
- Considers prosumage-household and wholesale-market lower feed-in tariffs reduce PV-Investments

Research Gap

- Role of Retailer and system feedback effects
- Incentives for system-oriented investments in residential PV and battery storage systems
- MCP-Modelling: Consideration of multiple optimization problems in one equilibrium model

Model framework (2-step approach)

Model

Framework 1

- Wholesalemarket and Prosumer-household
 - Dynamic retail prices based on hourly market clearing
 - Static retail price based on average market clearing

Framework 1

Framework 2

- Wholesalemarket, Retailer and Prosumer-household
 - Dynamic retail prices based on hourly market clearing incl. retailer margin
 - Static retail price based on average market clearing incl. retailer margin
 - Weighted retail tariff

House of **Energy Markets**

& Finance

Framework 2

Wholesale market

Model details

Important assumptions:

- Power plant portfolio
 - Conventionals
 - Renewables
 - Storages
- No (des-)investments
- Minimize system costs
- Constraints
 - Market clearing
 - Capacity restrictions
 - Storage filling level
- Perfect foresight, all actors are price takers

Prosumer-household

Model details

Important assumptions:

- Minimize (system) costs considering
 - Investments in PV and battery storages
 - Self-consumption
 - Grid consumption
 - Feed-in tariff
 - Storage usage
- Constraints
 - Demand balance (market clearing)
 - Feed-in restriction
 - Capacity restrictions
 - Storage filling level
 - Investment restrictions (capacity limits)

Retailer

Model details

Weighted Mix of yearly average wholesale price and time dependent wholesale price (incl. retailer margin)

Important assumptions:

- Maximize profit
- No market power vs. market power
- No intermediate storage
- Sole link between prosumer and wholesale market
 - Purchases at time-dependent price on wholesale market
 - Sells at time-independent price to consumers (in case of static retail tariff)
 - Further assumptions
 - RTP
 - (weighted) mix-up

Case study setting

Different standardized energy systems regarding

- Power plant portfolio
- Renewables
- Flexibilities

Retail tariff design

- Real time pricing
- Static pricing
- weighted pricing

Regulatory framework

- Levies and taxes
- Subsidies
 - Investment
 - Operative
 - e.g. different feed-in tariff designs

Identification of (regulatory) designs that lead to a system-oriented use of decentralized flexibilities.

Thank you for your attention!

Marco Sebastian Breder, M.Sc.

Lehrstuhl für Energiewirtschaft House of Energy Markets and Finance Universität Duisburg-Essen Universitätsstraße 12 | 45141 Essen | Germany Email: <u>Marco.Breder@uni-due.de</u> www.ewl.wiwi.uni-due.de

23.06.2022

References

- Bernath, C., Deac, G., & Sensfuß, F. (2021). Impact of sector coupling on the market value of renewable energies—A model-based scenario analysis. *Applied Energy*, 281, 115985.
- Bertsch, V., Geldermann, J., & Lühn, T. (2017). What drives the profitability of household PV investments, self-consumption and self-sufficiency?. *Applied Energy*, 204, 1-15.
- Dietrich, A., & Weber, C. (2018). What drives profitability of grid-connected residential PV storage systems? A closer look with focus on Germany. *Energy Economics*, 74, 399-416.
- Fridgen, G., Keller, R., Körner, M. F., & Schöpf, M. (2020). A holistic view on sector coupling. *Energy Policy*, 147, 111913.
- Gabriel, S. A., Conejo, A. J., Fuller, J. D., Hobbs, B. F., & Ruiz, C. (2012). Complementarity modeling in energy markets (Vol. 180). Springer Science & Business Media.
- Kappner, K., Letmathe, P., & Weidinger, P. (2019). Optimisation of photovoltaic and battery systems from the prosumer-oriented total cost of ownership perspective. *Energy, Sustainability and Society*, *9*(1), 1-24.
- Schill, W. P., Zerrahn, A., & Kunz, F. (2017). Prosumage of solar electricity: pros, cons, and the system
 perspective. *Economics of Energy & Environmental Policy*, 6(1), 7-32.

