

Prosumers with PV battery systems in electricity markets – a mixed complementarity approach

Marco Breder, Felix Meurer, Christoph Weber EURO 2022 Espoo, Finland 06.07.2022

Offen im Denken

- Which adjustments to the regulatory framework can work towards a system-oriented
 - operation of decentralized flexibilities?
- Considering decentralized actors, we focus on prosumers.
- We discuss the role of retailers.
- We use the concept of Mixed Complementarity Problems (MCP)
 - Different optimization problems are combined in one equilibrium model

Motivation

Motivation

Research on residential PV battery systems

Sector coupling

 Decentralized sector coupling and flexibility options are important for the integration of renewable energies.

 \rightarrow e.g. Bernath et al. (2021), Fridgen et al. (2020)

Investments in PV battery systems

 Increased investments in PV battery systems are accompanied by higher availability of decentralized flexibility.

 \rightarrow e.g. Dietrich, Weber (2018), Kappner et al. (2019)

Increasing self-consumption

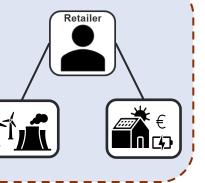
- Current regulatory design incentivizes self-consumption.
 - \rightarrow e.g. Bertsch et al. (2017)

System-oriented in this context: Provide more Flexibility / system-oriented use of decentralized flexibilities.

Focus on incentives for system-oriented investments

- Dietrich & Weber (2018)
 - Focus:

Profitability of residential PV battery storage system


- Method: Mixed-integer linear optimization model
- Highlights:

High temporal resolution (5 Minutes) Accounting for regulatory and fiscal treatment of prosumers

- Günther et al. (2021)
- Focus:
- Method:
- Highlights:
- Tariff design incentives on household-investments in residential PV and battery storage systems
- MCP Considers prosumage-household and wholesale-market
- lower feed-in tariffs reduce PV-Investments

Research Gap

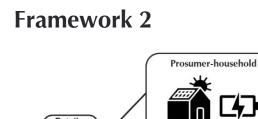
- Role of Retailer and system feedback effects
- Incentives for system-oriented investments in residential PV and battery storage systems
- MCP-Modelling: Consideration of multiple optimization problems in one equilibrium model

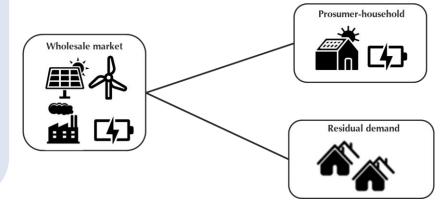
4

Model framework

Model

Framework 1

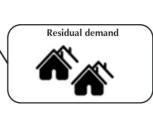

- Wholesalemarket and Prosumer-household
 - Dynamic retail prices based on hourly market clearing


• Framework 2

- Wholesalemarket, Retailer and Prosumer-household
 - retail tariff as retailer's decision variable
 - s. t. profit restriction

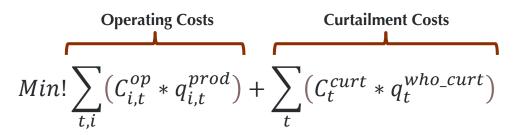
House of Energy Markets

& Finance



Retailer

Wholesale market



Wholesale market

Model details

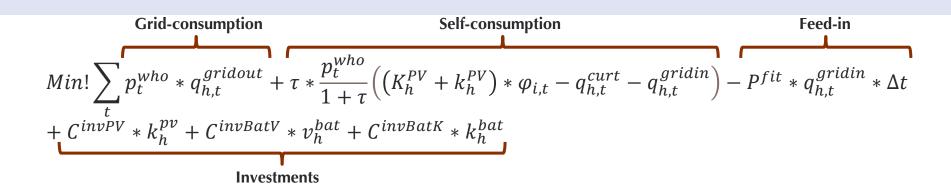
Important assumptions:

- Power plant portfolio
 - Conventionals
 - Renewables
 - Storages
- No (dis-)investments
- Perfect foresight, all actors are price takers
 - No rolling planning appraoch

Modelling:

- Minimize system costs
- Constraints
 - Market clearing
 - Capacity restrictions
 - Storage filling level

Prosumer


D U I S B U R G E S S E N

UNIVERSITÄT

Offen im Denken

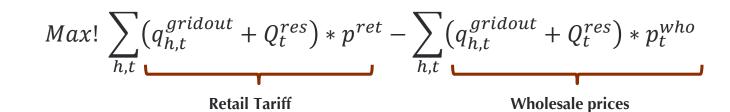
Model details

Important assumptions:

- Investments in PV and battery storages
- Self-consumption
- Grid-consumption
- Feed-in tariff
- Storage usage

Modelling:

- Minimize system costs
- Constraints
 - Demand balance (market clearing)
 - Feed-in restriction
 - Capacity restrictions
 - Storage filling level
 - Investment restrictions (capacity limits)



Retailer

Model details

Important assumptions:

- No market power vs. market power
- No intermediate storage
- Sole link between prosumer and wholesale market
 - Purchases at time-dependent price on wholesale market
 - Sells at **time-independent** price to consumers

Modelling:

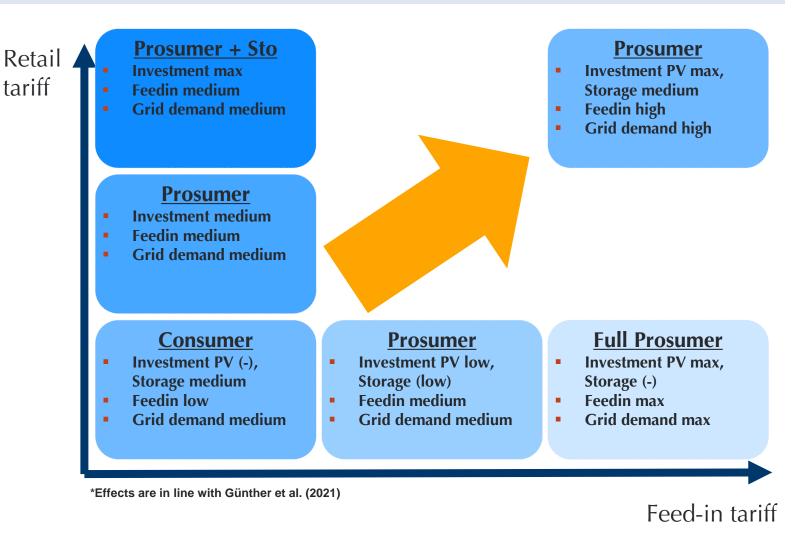
- Maximize profit
- Constraints
 - Retailer yearly Profit greater than zero

Preliminary results (simplified setting)

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

24 Timesteps


Assumptions:

- 24 timesteps
 - hourly resolution
- Endogeneous household-investments
 - PV
 - Battery Storage
- Variation of tariffs
 - Retail tariff
 - Feed-in tariff

Energy Markets

& Finance

06.07.2022

* Bundesnetzagentur (BNetzA): Grid Development Plan for German energy system

- **Energy Markets**

Renewables

Flexibilities

Taxes and levies **Subsidies**

- e.g. investment or operation

role of retailer

incentives for system-oriented investments

UNIVERSITÄT

DUISBURG ESSEN

Offen im Denken

system feedback effects

Next Steps

Outlook

- Model scaling
 - Full year (hourly resolution)
 - Geographical Scope (Germany, EU) —
 - Prosumer Profiles (Open Power System Data) —
 - Wholesale market (TYNDP, Netzentwicklungsplan* (NEP))
- Case Studies
 - Retail tariff design

- Real time pricing
- Static pricing
- weighted pricing
- Regulatory framework —
- Different energy systems —
 - - Power plant portfolio

Thank you for your attention!

Marco Sebastian Breder, M.Sc.

Lehrstuhl für Energiewirtschaft House of Energy Markets and Finance Universität Duisburg-Essen Universitätsstraße 12 | 45141 Essen | Germany Email: <u>Marco.Breder@uni-due.de</u> www.ewl.wiwi.uni-due.de

References

- Bernath, C., Deac, G., & Sensfuß, F. (2021). Impact of sector coupling on the market value of renewable energies–A model-based scenario analysis. *Applied Energy*, 281, 115985.
- Bertsch, V., Geldermann, J., & Lühn, T. (2017). What drives the profitability of household PV investments, self-consumption and self-sufficiency?. *Applied Energy*, 204, 1-15.
- Dietrich, A., & Weber, C. (2018). What drives profitability of grid-connected residential PV storage systems? A closer look with focus on Germany. *Energy Economics*, 74, 399-416.
- Fridgen, G., Keller, R., Körner, M. F., & Schöpf, M. (2020). A holistic view on sector coupling. *Energy Policy*, 147, 111913.
- Gabriel, S. A., Conejo, A. J., Fuller, J. D., Hobbs, B. F., & Ruiz, C. (2012). Complementarity modeling in energy markets (Vol. 180). Springer Science & Business Media.
- Kappner, K., Letmathe, P., & Weidinger, P. (2019). Optimisation of photovoltaic and battery systems from the prosumer-oriented total cost of ownership perspective. *Energy, Sustainability and Society*, 9(1), 1-24.
- Schill, W. P., Zerrahn, A., & Kunz, F. (2017). Prosumage of solar electricity: pros, cons, and the system
 perspective. *Economics of Energy & Environmental Policy*, 6(1), 7-32.
- Günther, C., Schill, W. P., Zerrahn, A. (2021). Prosumage of solar electricity: Tariff design, capacity investments, and power sector effects. *Energy Policy*, 152 (2021), 112168.

